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ABSTRACT 

Big data is an area of technological research which has been receiving increased 

attention in recent years. As the Internet of Things (IoT) expands to different spheres of 

human life, a large volume of structured, semi-structured and unstructured data is 

generated at very high velocity. To derive value from big data, businesses and 

organisations need to detect patterns and trends in historical data. They also need to 

receive, process and analyse real-time data in real-time, or close to real-time, a 

challenge which current technologies and traditional system architectures find difficult to 

meet. This research aims to investigate such challenges with a view to proposing a 

workable solution. 

A number of architectures have emerged to answer distinct challenges posed by big data 

such as distributed batch processing of historical data, or the processing of streaming 

data in real-time. There is no single accepted solution to cater for all types of big data 

processing, so different technologies tend to be used in combination. Consequently, the 

learning curve for a developer working with big data is steep, and the processing logic 

developed within one system is generally not compatible with other systems, leading to 

code duplication and low maintainability. This research proposes to investigate the 

requirements for a unifying processing component for big data, and to create a 

microservices architecture where the processing logic encapsulated within each service 

component can be reused.  

The experimental part of this research will involve the creation of a prototype to 

demonstrate the proposed microservices architecture. This prototype will be evaluated 

technically, via benchmarks, and empirically, through a case study followed by qualitative 

data analysis.   
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INTRODUCTION 

RESEARCH CONTEXT 

The advent and expansion of the IoT (Internet of Things) and has brought big data to the 

forefront of technology research. Smartphones, tablets, GPS trackers, sensors, video 

surveillance devices all produce a vast amount of data, in different formats, in real time. 

This data presents challenges not only in terms of storage, but also when it comes to 

processing and analysing it to extract information which is valuable to businesses and 

government agencies. A recent report published by CISCO shows that devices and 

connections are growing faster than the global population, which is partly due to the 

increase in the number of connected devices per household (“The Zettabyte Era—

Trends and Analysis - Cisco,” 2016). Over the next 20 years, this expansion in the 

industrial IoT is estimated to add $10 to $15 trillion to the global GDP, according to a 

report published by GE (Evans & Annunziata, 2012). 

Microservices are a recent architectural pattern which emerged from challenges 

presented by large monolithical applications to real-world companies (Nadareishvili et 

al., 2016, p. ix). They are highly suited to the IoT, as they share the same requirements 

and the architectural goal of creating applications through distributed service 

composition (Butzin et al., 2016). A number of cloud service providers such as Amazon 

Web Services (AWS), Google Cloud Platform and Microsoft Azure have started to offer 

big data services for processing batch and stream data. However, there is very little 

integration between services offered by different cloud providers (Chen, H. et al., 2016). 

Moreover, collaboration between developers working with these technologies with a view 

to sharing requirements and reusing code is limited (Park et al., 2015). 

One of the main obstacles to collaboration between developers working with Big Data 

as a Service (BDaaS) is the use of proprietary technology by cloud service providers. 

This means services built within one provider’s platform will not necessarily work if 

transposed to a different provider’s platform (Chen, H. et al., 2016). In order to achieve 

platform decoupling, an in-depth study of the common abstractions shared by BDaaS 

platforms’ underlying processing languages must be conducted, with a view to producing 

recommendations for a unifying microservice component model capable of operating on 

different BDaaS platforms. Research, informed by accepted design principles such as 

reusability, loose coupling, cohesion, abstraction, composition, autonomy, portability and 
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distribution, needs to be conducted to advance towards a unifying set of models, 

methods and processes for big data processing in the cloud. 

This research endeavours to fill this gap by producing a systematic and unified approach 

to developing Big Data as a Service (BDaaS) based on a microservices architecture. To 

achieve this aim, existing knowledge in the area of big data processing, microservices 

and architectures will be thoroughly reviewed. Informed by these findings, a unique 

classification for the different types of processing architectures will be proposed, and a 

new unifying microservices architecture for big data processing will be created. 

Additionally, a visual modelling notation and a formal specification language will also be 

produced to support the analysis and design of big data processing microservices. 

SCOPE 

This research will focus on big data processing, defined as the transformations which 

takes place after the data has been collected and before it is analysed (see fig. 1.). 

Storage, which can happen after collection, after processing, after analysing, or at any 

combination of these stages, is excluded from the scope of this project.  

 

Figure 1. Big Data Architectural Layers  
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RATIONALE, AIM AND OBJECTIVES 

RATIONALE 

The diverse architectures and variety of technologies used to process big data make the 

learning curve for a developer working with big data high. A survey on IIOT adoption 

commissioned by the Industrial Internet Consortium reveals that 64% of senior IT 

executives believe integrating data from disparate sources and formats is amongst the 

biggest challenges of the Industrial IOT, and 36% of organisations have concerns around 

accessing the right skills and expertise (Soley et al., 2016). This shortage of highly skilled 

big data professionals is a worldwide problem which higher education providers are only 

beginning to address, according to research conducted at the Østfold University College 

(Due et al., 2015). 

As indicated by Miller (2014), the demand for data engineers who are capable of 

integrating big data from different data sources is on the increase. However, since the 

types of data sources and technologies involved in big data processing are not 

standardised, it becomes challenging for universities to design a curriculum around the 

specific skills that the industry requires (Miller, 2014). 

Calls have been made for a unifying development platform which could cope with the 

different challenges posed by big data, as well as a de facto programming language 

capable of expressing the different processing demands of big data analysis (Gorton, 

2008). This solution would need to be capable of processing batch as well as stream 

data in order to reconcile the major big data processing models, and would represent an 

important contribution towards focusing the training and reducing the learning curve for 

IT professionals entering the field. It would also promote collaboration and reuse 

amongst developers working on a variety of microservices platforms. 

RESEARCH QUESTIONS 

This research seeks to investigate the major architectures designed for the processing 

of BDaaS, and to advance towards a unifying set of models, methods and processes for 

big data processing in the cloud. The primary questions of this research are thus: 
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• Does existing technology support the creation of unifying and reusable 

microservices capable of processing different types of big data from a variety of 

different sources? 

•  Which models, methods and processes need to be in place to support the 

design and development of these microservices? 

• Would the proposed products of this research be useful to IT professionals in a 

real-world organisation?  

AIM 

The aim of this research is to produce a systematic and unified approach to developing 

Big Data processing pipelines in the cloud, based on reusable and scalable 

microservices.  

OBJECTIVES 

In order to achieve the aim of producing a systematic and unified approach to developing 

Big Data processing pipelines in the cloud, based on reusable and scalable 

microservices, I intend: 

• to review and critically evaluate existing literature and approaches in the area of 

big data processing, microservices and architectures; 

• to identify and evaluate key design principles for the development of a new 

modelling notation and microservices architecture for big data processing in the 

cloud, such as reusability, loose coupling, cohesion, abstraction, composition, 

autonomy, portability and distribution; 

• to identify design patterns in existing big data frameworks and determine those 

applicable for a cloud-based microservices architecture for big data. 

• to identify various behaviours of big data and to devise a new classification for 

existing big data processing patterns; 

• to create a microservices architecture for the processing of big data by unified, 

reusable and scalable microservices; 

• to evaluate the suitability of existing modelling languages such as 

UML/SoaML/SysML for the abstract representation, specification and verification 

of the proposed microservices for big data processing. 

• to propose a visual modelling notation to represent cloud-based big data 

processing microservices;  
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• to identify metrics for cloud-based big data processing microservices and to 

evaluate them against these metrics; 

• to develop a demonstrable prototype to evaluate the modelling notation and 

unified microservices architecture for big data processing in the cloud with a 

real-world case study (Leeds Beckett University, possibly Google Research, 

USA, and the Microsoft Azure Development Team). 

The review of existing literature will be used to gain knowledge of the main existing 

methods for big data processing, and of existing big data and microservices 

architectures. It will also help identify the key design principles for big data processing 

and the design patterns applicable to a unifying BDaaS microservices architecture. A 

new level of abstraction to represent big data and a new microservices architecture for 

the processing of BDaaS by unified and reusable microservice components will 

represent unique contributions to existing knowledge, and will be devised using the 

information gathered in the literature review. 

The next step will be to propose a visual modelling notation and a formal specification 

language capable of expressing the fundamental programming abstractions involved in 

big data processing and supporting the design of big data processing microservices. 

The experimental part of this research will involve the creation of a prototype to 

demonstrate the proposed microservices architecture for processing different types of 

big data. This prototype will be evaluated technically, via benchmarks, and empirically, 

through a case study followed by qualitative data analysis.   
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RELATED WORK AND DEFINITIONS 

RELATED WORK 

A model for integrating BDaaS across different providers, called Neo-Metropolis, was 

proposed by H. Chen et al. (2016). This model is based on a kernel, which provides the 

platform’s basic functionality, a periphery, composed of various service providers hosted 

on different clouds, and an edge, representing customers who utilise services and 

provide requirements (Chen, H. et al., 2016). Whilst the kernel would be fairly stable and 

backwards compatible, with stable releases, the periphery would be in constant 

development, or perpetual beta, and would be based on open-source code (H. Chen et 

al., 2016).  

The Neo-Metropolis study conducted a case study based on Cisco’s Intercloud Services 

Platform, which was, at the time of writing, the only commercial Neo-Metropolis 

implementation (H. Chen et al., 2016). Cisco Intercloud Services Platform provides a 

common interface for managing data and provisioning services across different cloud 

providers. Thus, the processing logic contained in services deployed to this platform can 

be reused, as data from different clouds can be plugged in as required (see fig. 2.) 

(“Cisco Intercloud Fabric: Hybrid Cloud with Choice, Consistency, Control and 

Compliance”, 2016). 

 

Figure 2. Service Provider Managed Hybrid Cloud (“Cisco Intercloud Fabric: Hybrid Cloud with Choice, 

Consistency, Control and Compliance”, 2016) 

This research complements the Neo-Metropolis solution, but differs from it in that it 

proposes an additional layer of abstraction to enable the processing of diverse types of 
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big data using a unified microservice component. Let us consider, for instance, a simple 

service that filters data based on some regular expression. A microservice developed 

within the Cisco Intercloud platform, built using Cloudera, Hortonworks, or another 

Hadoop implementation available within the platform, would run against Amazon EMR, 

Azure’s HDInsight, or other Hadoop-based services hosted on different clouds. It would 

not, however, run against streaming data. If we wanted to reuse the same filtering logic 

to process stream data, the service would need to be re-written as a Storm or Spark-

based service. This research proposes an abstraction for representing different types of 

big data which would enable a greater spectrum of reuse for big data processing 

microservices (see fig. 3.). 

 

Figure 3. Proposed BDaaS Processing Layer 

IBM’s big data platform is a different type of solution to the Neo-Metropolis model. It is 

not a microservices type of architecture and does not provide inter-cloud integration, as 

did the Neo-Metropolis model, but it provides answers to some of the issues we identified 

previously, namely the interoperability of processing components across different types 

of big data. BigInsights, a Hadoop-based system consisting of a standard Hadoop kernel, 

plus a number of components built around it (Zikopoulos et at., 2012, p. 51), is a central 

part of IBM’s big data platform. BigInsights integrates with Stream, a system designed to 

process real-time data, by means of adapters (Zikopoulos et at., 2012, p. 109). 
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The adapter used by IBM’s big data platform to allow batch data to be processed as 

streams is particularly relevant to this research, as it uses the concept of windows of data 

to perform the conversion (Zikopoulos et at., 2012, p. 128). This concept is also present 

in the Java Stream API, for example, which uses windows based on element count to 

make an infinite stream finite (“Java Platform SE 8”, 2014). Additionally, sliding time 

windows have been identified as a recurrent pattern in stream processing (Khare et al., 

2015) and it has been suggested that a stream architecture enhanced with ways to 

reason about time could supersede the Lambda Architecture (Akidau, 2015). Previous 

research thus suggests that a common processing language for batch and stream data 

would need to incorporate the concept of windows of data. 

This research aims to explore the use of the Adapter design pattern (Gamma et al., 1994) 

in a similar way to that implemented as part of IBM’s big data platform. However, instead 

of translating from the batch layer to the stream layer and using the stream layer to 

process the data, or vice-versa, it proposes an additional layer of abstraction where the 

processing takes place (see fig. 3.) so as to facilitate the development, deployment and 

reuse of small processing units as microservices. 

Google Cloud Dataflow is a managed cloud-based service which offers a unifying 

programming language for the processing of batch and stream data (Schmidt, 2015). It 

incorporates Millwheel, a stream-based framework built around the concepts of low 

watermarks and timers to extract accurate data from near-real-time streams (Akidau et 

al., 2013). Millwheel uses an abstraction called PCollection to represent bounded or 

unbounded stream or batch data (“PCollection” 2016). Unbounded data, i.e. very large 

batch data or infinite streams of data, is processed in stages through the use of 

windowing (see fig. 4) (Schmidt, 2015). 
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Figure 4. Cloud Dataflow provides a unified computation model for batch and streaming processing (Schmidt, 

2015) 

The Google Cloud Dataflow solution addresses the question of processing stream and 

batch data using a unifying programming language. The solution is proprietary, but 

Google has made the Cloud Dataflow SDK open source, and maintains it is possible to 

utilise it to build services which could be deployed on other clouds (Vambenepe, 2015). 

Cloudera has initiated a project to incorporate the Google Cloud Dataflow SDK into 

Apache Spark, but their project is still in its infancy and, at the time of writing this 

proposal, no substantial results have been found in the literature (Wills, 2015). This 

research shall conduct a rigorous academic assessment of these recent technological 

advancements, with a view to possibly utilising the Google Cloud Dataflow SDK as a 

programming language to support the proposed unifying microservices architecture for 

BDaaS processing. Furthermore, we shall contribute to existing research and practice 

by proposing a standardised set of models, methods and processes for the development 

of BDaaS processing microservices. 

Other less closely related work, such as architectures designed to process batch or 

stream data, the lambda architecture and hybrid architectures, is detailed in the 

definitions section. 
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DEFINITIONS 

The following terms will be used throughout this research as defined below. 

ARCHITECTURE 

As stated by (Bass et al., 2012, p. 26), software architecture is a new discipline and there 

are many existing definitions for it. Taylor et al. define it as   

“the set of principal design decisions made during its development and 

any subsequent evolution.” (Taylor et al., 2009, p. 1) 

This is a broad definition, which does not convey the idea of architecture as the 

representation of the structure of a software system. This research shall utilise the 

definition provided by Bass et al. 

“The software architecture of a program or computing system is the 

structure or structures of the system, which comprise software 

components, the externally visible properties of these components, and 

the relationships among them.” (Bass et al., 2012, p. 23) 

where a component would represent a microservice. 

MICROSERVICES 

Microservices are small deployable units which encapsulate functionality that can be 

used by other systems. A microservices architecture is usually defined as the opposite 

of a monolithic application architecture (Nadareishvili et al., 2016, p. 17), (Newman, 

2015), (Bonér, 2016), i.e. an architecture guided by the principle of breaking down 

complex functionality into small independent units which collectively constitute a 

computing system. Sam Newman defines microservices as a collection of “small, 

autonomous services that work together” (2015, p. 16).  

Microservices are cohesive, loosely coupled and composable (Miller, 2015) (Newman, 

2015), making the architecture more resilient in the event of failure. They are also more 

agile, as their development and deployment takes comparatively less time than if the 

same functionality were to be implemented as part of a monolithic application (Miller, 

2015). Since the components are cohesive, isolated and loosely coupled, there are fewer 

side-effects to implementing new code. Individual units can be replaced independently, 

so there is no need to bring a whole application down for upgrades or maintenance 
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(Miller, 2015). Given the distributed nature of big data systems, a microservices 

architecture is more flexible and resilient, and therefore more suitable than the traditional 

monolithic approach.    

BIG DATA 

Big data can be defined as data which somehow challenges the processing capabilities 

of current technology. These challenges are usually categorised around the three Vs: 

volume, velocity and variety (Casado & Younas, 2015), (Assunção et al., 2015), 

(Zikopoulos et al., 2013, p. 9) and others, with the occasional mention of additional Vs 

such as veracity, value and viability (Assunção et al., 2015).  

The volume of data which lead internet companies such as Facebook and Netflix have 

accumulated has reached hundreds of petabytes (Krishnan & Tse, 2013), (Bronson et 

al., 2015), and it has been estimated that the largest big data company in the world, 

Google, holds over 10 exabytes of data (Lederman, 2016). This data is kept on disk, 

stored in data centres all over the world, posing significant architectural challenges when 

it comes to processing it in order to extract valuable information with an acceptable level 

of latency. 

The velocity at which data is generated is also a significant factor when it comes to 

engineering applications which will consume and process this data. Netflix’s data 

pipeline, for example, receives approximately 500 billion events a day, which amounts 

to 1.3 petabytes of incoming data that needs to be processed each day, in real time 

(“Evolution of the Netflix Data Pipeline,” 2016). Facebook processes hundreds of 

gigabytes per second across hundreds of real-time data pipelines (G. Chen et al., 2016). 

These companies have invested in architectures which can consume incoming data at 

high velocity.   

The most accepted classification for big data variety separates it into structured (usually 

stored in relational databases), semi-structured (data stored in NoSQL databases) and 

unstructured (Mohammed et al., 2016), (Casado & Younas, 2015). Assunção et al. add 

a mixed category to this classification (Assunção et al., 2015). Data which originates 

from surveillance cameras, social networks or tracking devices, for example, is diverse 

in structure from data stored in NoSQL databases, which is again diverse from data 

stored in relational databases.  An architecture designed to cater for all types of big data 
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needs to take the variety factor into consideration, as one can no longer assume that 

data will be stored in a single relational database. 

This research uses the term big data to refer to data characterised by the three Vs 

defined above. 

BIG DATA PROCESSING PARADIGMS 

Thomas Kuhn (1964) introduced the notion of scientific paradigms as 

“…universally recognized scientific achievements that for a time provide 

model problems and solutions to a community of practitioners.” (1964, viii) 

A paradigm as defined by Kuhn implies a level of consensus within the scientific 

community around concepts, practises and experiments over a period of time (1964).  

In the field of big data processing, Casado & Younas (2015) identify three paradigms to 

explain the evolution of big data architectures: batch processing, stream processing, and 

the Lambda Architecture, which comprises batch plus stream processing.  

 

Figure 5. Processing paradigms (Casado and Younas, 2015) 

At the time of writing their paper, the authors believed they were in the middle of the real-

time or stream processing paradigm (see fig. 5.) (Casado & Younas, 2015). This is 
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explained through the number of real-time architectures that were being developed at 

the time. The Lambda Architecture and other hybrid computation models represented 

the future (Casado & Younas, 2015). This research argues that only batch processing 

characterises a paradigm in Kuhn’s terms, as it was only during the batch period that 

there was enough agreement around concepts and processes to allow the scientific 

community to conduct normal science.  

Contrary to what was suggested by Casado and Younas (2015), it is hard to trace a 

clear-cut line of when the stream processing paradigm ends and the hybrid computation 

paradigm begins. Twitter’s Summingbird (Hausenblas, 2014) and Yahoo’s Storm-Yarn 

(Evans & Feng, 2013), for example, are both early instances of the Lambda Architecture, 

whereas Apache Storm, one of the leading stream-based data processing frameworks, 

is still widely used and underwent a major release as late as 2016 (Goetz, 2016). 

This research views the period after the end of the batch processing paradigm as one of 

crisis and emergence of new scientific theories, rather than of one of normal science, 

when a paradigm is able to provide adequate answers for the questions it defines (Kuhn, 

1964). Through an evaluation of the emerging architectures and proposal of an original 

classification, this research aims to enhance current understanding of a period of 

scientific revolution in the field of big data processing. 

BATCH PROCESSING 

Batch processing was the first and is the most solidly established approach. It is based 

on the MapReduce algorithm and was designed at Google (Dean & Ghemawat, 2008), 

before going open-source as the Hadoop software framework. Hadoop is a distributed 

system for processing large volumes of data which is easy to use and extremely powerful 

(Dean & Ghemawat, 2008). It abstracts the complexities of parallelisation and inter-

machine communication away from the user, who only needs to specify the map and 

reduce functions (Dean & Ghemawat, 2008). Hadoop can handle terabytes of data 

(O’Malley, 2008), but one of its main criticisms is its high latency and high start-up 

overhead (Stewart & Singer, 2012), which renders it ineffective for real-time systems. 

Most cloud service providers offer some type of Hadoop managed service such as, for 

example, Amazon’s Elastic MapReduce (“What is Amazon EMR?,” 2016), Azure’s 

HDInsight (Gronlund, 2016), or IBM’s BigInsights (Zikopoulos et at., 2012, pp. 85-123). 
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Since this research aims to investigate big data processing in the context of a 

microservices architecture, it will focus on Hadoop provided as a service. 

STREAM PROCESSING 

Stream processing architectures evolved from the need to process real-time data. While 

batch processing is related to the volume of big data, stream processing relates to 

velocity. Real-time information such as which topics are trending on Twitter needs to 

come from data which is constantly being updated, with minimal latency. The notion of a 

data stream is an abstraction used to convey the nature of the data source: continuous 

and potentially infinite, and the way in which it is processed: in real-time (or close to real-

time), before it is persisted to storage (Zikopoulos et al., 2013, p. 47).  

Many reactive architectures were designed to cater for big data streams, such as 

Yahoo’s S4 (Neumeyer et al., 2010), Apache Storm (Marz, 2014), Borealis (Abadi et al., 

2005), StreamCloud (Gulisano et al., 2010), Stormy (Loesing et al., 2012), TelegraphCQ 

(Chandrasekaran et al., 2003) and Cyclops-React (McClean, 2015). Unlike the batch 

processing architectures, which are mostly centred around MapReduce, when it comes 

to stream-based architectures, there is no prevailing technology, although Apache Storm 

is a strong candidate (Casado & Younas, 2015). The main criticism when it comes to 

real-time stream-based systems is that they tend to compromise veracity or precision for 

velocity or ultra-low latency (Akidau, 2015). 

Stream processing is offered as a service by cloud providers such as Amazon (“Amazon 

Kinesis Streams” 2016), Microsoft Azure (“Stream Analytics – Real-time data analytics,” 

2016) and IBM  (Zikopoulos et al., 2013, pp. 127-162). This research shall concentrate 

on stream processing provisioned as a service. 

LAMBDA ARCHITECTURE 

The Lambda Architecture was presented by Marz & Warren to describe systems which 

would adopt a “best of both” approach to the batch/stream dichotomy. These 

architectures would use the stream layer for real-time data and the batch layer for 

historical data. The data would then be merged at query level (2015). Examples of this 

type of architecture can be found in Twitter’s SummingBird (Hausenblas, 2014), Yahoo’s 

Storm-Yarn (Evans & Feng, 2013), IBM’s Big Data platform (Zikopoulos et al., 2013), 

Lambdoop (Tejedor, 2013), AllJoynLambda (Villari et al., 2014) and Facebook’s 
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integration between its Puma, Swift and Stylus stream systems and its data stores (G. 

Chen et al., 2016). The main criticism to this approach is having to maintain two different 

complex architectures and having duplicate code in the two different layers (Kreps, 

2014). 

Examples of the lambda architecture provided as a service are Google Cloud Dataproc 

(“What is Google Cloud Dataproc?,” 2016) and Azure’s HDInsight Plus, which adds 

Apache Spark and Apache Storm clusters to the standard HDInsight Hadoop 

components (Shah, 2016). As with the batch and stream architectures, this research 

shall focus on the lambda architecture provided as a service. 

HYBRID ARCHITECTURES 

This research defines hybrid architectures as those which are batch-based but have 

been adapted to consume data from streams or those which are stream-based but have 

been adapted to consume historical data from batches. Examples of the first type are 

(Grinev et al., 2011), who modified the reduce function in MapReduce to accept push 

values, (Condie et al., 2010), who modified the map function to pipeline data to reducers 

as it is produced and (Brito et al., 2011), who reimplemented stateless stream processing 

operators as mappers and stateful operators as reducers. Examples of architectures 

which are stream-based, but capable of processing batch data with very low latency are 

Google’s MillWheel (Akidau et al., 2013), elucidated in the Related Work section, and 

the combination of Kafka and Samza used at LinkedIn, which is built on the concepts of 

ordered data and replayable streams (Kreps, 2014). 

This research shall concentrate on hybrid big data architectures provided as a service 

such as, for example, MillWheel, which is part of the Google Cloud Dataflow platform.  

DATABASE-BASED ARCHITECTURES 

Database-based architectures are built around databases or data stores and may or may 

not be adapted to consume stream data. Examples of these architectures are Percolator, 

a system designed to incrementally update Google’s web search indexes (Peng & 

Dabek, 2010), SnappyData, which combines Apache Storm with GemFire, a 

transactional store which keeps data in RAM memory across distributed nodes for fast 

access (Ramnarayan et al., 2016), and (Simmonds et al., 2014) which uses Cassandra 
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distributed across multiple nodes in the cloud and minimises latency through the use of 

efficient indexing patterns.  

Database-based architectures generally underperform when compared to the other 

types of architecture described previously (Peng and Dabek, 2010), so they are not 

offered as cloud-based services by the main commercial providers. The evaluation of 

(Simmonds et al., 2014)’s research was performed using the Amazon cloud, but they did 

not offer a comparison with other types of processing architectures. Although database-

based big data processing architectures are not typically offered as a service, this 

research proposes to examine them in order to acquire a thorough understanding of the 

subject matter, and to gather knowledge to create a new classification for big data 

processing architectures.  
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METHODOLOGY 

Briony Oates identifies six strategies for carrying out research: survey, design and 

creation, experiment, case study, action research and ethnography (Oates, 2005). This 

research adopts the design and creation strategy, and uses a case study for its 

evaluation. 

PHILOSOPHICAL APPROACH 

Approach can be defined as the researcher’s perspective, or the manner in which they 

conduct their research (Galliers, 1985, p. 147). Generally, the literature identifies two 

competing approaches to research: positivist/empirical and interpretivist/constructivist. 

Positivists focus their research on scientific experiments, characterised by repeatability, 

reductionism and refutability. Interpretivists, on the other hand, recognise that reality is 

formed by individual and social constructs, and believe there can be many possible 

interpretations for the same phenomena (Oates, 2005, pp. 281-296), (Leedy & Ormrod, 

2000), (Galliers, 1985). 

Although the positivist approach still prevails in the realms of the natural and engineering 

sciences, as well as computer science and software engineering (Lee et al., 2014), it is 

recognised that positivism has been generally ineffective in social sciences (Hirschheim, 

1985). By taking the viewpoint that computer systems are social rather than technical 

systems (Land, 1992), (Hirschheim, 1985), this research shall reject positivism in favour 

of one of its variants: post-positivism, along the lines of Karl Popper (Popper, 1968).  

Popper shared many of the tenets of positivism such as repeatability and reliance on 

rigorous experiments, but he believed there was a fundamental problem with the validity 

of statements gathered from experience. The inductive process could not, according to 

him, lead to universal truths about the world. It could only lead to imperfect knowledge 

which will one day be superseded. A meaningful scientific hypothesis, according to 

Popper, is one which is falsifiable, that is to say one which could be invalidated by 

experience. If a given hypothesis cannot be invalidated by any possible experiment, then 

it does not enhance the knowledge we have of the world – it is not scientific. From this 

perspective, we can derive that what is possible to know about the world is not that 

something is true (true or false are not empirical concepts for Popper), but that, so far, 

experiments have not proven it to be false (Popper, 1968). The current research shall be 
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undertaken under this philosophical stance. Care will be taken to ensure that the 

hypotheses formulated in the development and evaluation of the research products are 

empirically falsifiable. Additionally, the theories, models and classifications to emerge 

from this study will be understood, not as universal truths, but as improvements to 

existing theories. 

This research agrees with Roth and Mehta (Roth & Mehta, 2002) in that there are 

benefits to be reaped from combining different philosophical perspectives in the 

evaluation of a research product. In particular, the evaluation and discussion of the 

results of the case study proposed shall benefit from an interpretivist perspective, as the 

outcomes observed will be influenced by a number of different variables which cannot 

be as easily controlled as in a laboratory experiment. This research recognises the value 

of considering different interpretations for qualitative data, and ascribes significance to 

the impact that a scientist may have in the case being studied.  
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PROTOTYPE DEVELOPMENT 

The development methodology used in the creation of a new microservices architecture 

for big data processing in the cloud, as well as in the case study implementation will be 

prototype-based. There will be an initial analysis and design phase in which the 

knowledge gathered from the literature will be processed and design ideas put forward 

for examination. This shall be followed by the creation of a prototype to demonstrate the 

main concepts of the proposed solution.  

The prototype will be further enhanced through additional cycles of analysis, design, 

implementation and testing. The choice of a prototype-based methodology instead of, 

for example, a waterfall-based approach, was taken to allow for early experimentation 

with different solutions. This warrants for better distribution of the time available and 

mitigates the risk of spending excessive time on design and analysis, to the detriment of 

implementation and testing (Oates, 2005,  p. 114). 

A pure agile approach to development was considered but, due to the importance of 

design and analysis to this research, it was deemed unsuitable. While the agile approach 

focuses on delivery and measures progress by the software that gets delivered (Beck et 

al., 2001), this research shall focus on design and analysis and how these can be 

enhanced with each iterative development cycle. 

REQUIREMENTS 

The development of the proposed microservices architecture for big data processing 

requires: 

• a source of big batch data; 

• a source of fast streaming data; 

• a clustered Hadoop environment available as a service; 

• a Stream environment available as a service; 

• a development environment with 4-8 virtual machines, preferably hosted in 

different clouds; 

• a minimum of 16 cores of CPU and 1TB of storage. 

An application has been submitted to the Azure for Research program for cloud 

resources meeting the above specifications. 
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An application will be submitted to the Open Science Data Cloud (OSDC), a scientific 

community which provides support for researchers, for: 

• General Compute Resources, which include 1TB of storage and 16 cores of 

CPU; 

• Access to the Public Data Commons, which contains 1PB of public data in a 

variety of disciplines; 

• Hadoop Resources. 

Alternative providers of cloud resources have been considered: Amazon AWS and 

Google Cloud Platform, but preference will be given to Azure for Research and the Open 

Science Data Cloud as they are the only services which are free of charge for 

researchers. 

EVALUATION 

The prototype proposed as part of this research will be evaluated empirically by means 

of benchmarks and a case study.  

BENCHMARKS 

The microservices architecture for big data processing proposed in this research will be 

evaluated through benchmarks and compared to industry standard solutions for big data 

processing.  

A minimum of three fundamental quality metrics will be identified and used to set up the 

benchmarks, reflecting key software architecture principles such as reusability, loose 

coupling, cohesion, abstraction, composition, autonomy, portability and distribution.  

The proposed microservices architecture shall be compared to that of Hadoop provided 

as a service, as well as the Google Cloud Dataflow. 

CASE STUDY 

This research proposes to evaluate the new microservices architecture, the visual 

modelling notation and the formal specification language created by means of a case 

study, which will also serve as triangulation for the benchmark evaluation.  
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Although there have been increasing demands for real-world evaluation of computer 

systems (Oates, 2005, p. 111), this is not undertaken very often in computer science. In 

a survey of 400 research papers, (Tichy et al., 1995) concluded that computer scientists 

published significantly less empirically validated results when compared to optical 

engineers and neural scientists. They regard this as a limitation which needs to be 

corrected if computer science is to enjoy the same level of recognition as engineering 

and the natural sciences (Tichy et al., 1995). A broader survey was conducted more 

recently where 1500 scientific papers in the areas of computer science, software 

engineering and information systems were analysed. The conclusion was similar: 

computer science and software engineering tend to focus on creating new products, but 

there is very little effort expended on evaluation (Glass et al., 2009). In light of these 

shortcomings in the field, this research aims to provide real-world evaluation of its 

products by conducting a case study. 

The case study proposed shall allow us to evaluate:  

• the effectiveness of the microservices architecture in processing big data in a 

real- world setting;  

• the usability of the microservices architecture to software developers;  

• the expressiveness of the visual modelling notation and specification language. 

Furthermore, the case study will be used to gauge the relevance of this research to 

practitioners, as advocated by (Rosemann & Vessey, 2008) in their repudiation of the 

rigour versus relevance dichotomy. Although they suggest focus groups as the ideal 

means of conducting applicability checks, due to the importance of leaving the research 

object unchanged and the fact that a focus group doesn’t need a research lifecycle of its 

own (Rosemann & Vessey, 2008), this research believes a small scale case study meets 

the required criteria while painting a richer picture of the object being studied. 

CASE DESCRIPTION 

A case study will be conducted within the Estates Services department at Leeds Beckett 

University. As part of the case study, a prototype of the proposed microservices 

architecture shall be implemented for a limited set of data with the typical volume, velocity 

and variety characteristics. 
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The case study will then be described and the microservices architecture, visual 

modelling notation and specification language presented to the target population through 

appropriate documentation. This shall be followed by semi-structured interviews with the 

target population. 

EVALUATION CRITERIA 

This case study will be conducted in order to verify whether: 

• The microservices architecture can process stored data with an acceptable level 

of latency in a real-world scenario. 

• The microservices architecture can process streaming data with an acceptable 

level of accuracy in a real-world scenario. 

• The microservices are decoupled from their underlying platforms in a real-world 

scenario. 

• The visual modelling notation and specification language are accessible, 

expressive and useful to business analysts, project managers and developers. 

• The microservices architecture is accessible to developers who have limited 

experience with big data analytics.  

SELECTION CRITERIA 

This case study has been selected for being critical, meaning it has the particular 

conditions that allow the testing of the research’s hypotheses (Dubé & Paré, 2003). The 

Estates Services department at Leeds Beckett University manages data which has the 

fundamental characteristics of big data: volume (log files with operational data that spans 

several years), velocity (data from meters, that is sampled and streamed in real-time) 

and variety (device log exports, for example, contain unstructured data, as the format is 

specific to each manufacturer).  

A needs analysis exercise was conducted with the Engineering Systems Manager at 

Leeds Beckett University to gather preliminary information for this case study. It revealed 

the existence of a study conducted in 2012 to assess the energy efficiency of one of the 

university’s data centres by calculating its Power Usage Effectiveness (PUE) (Pattinson, 

2012). The real-time sampling rate used for this study was, however, limited by the 

technology available at the time. It is possible that, by modifying the current sampling 

approach to one of higher volume and velocity, the calculation will become more 
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accurate and therefore suitable to other controlled environments such as laboratories or 

large colocation data centres.  

It should be stated that convenience has also influenced the selection of this case study. 

This research is being conducted at Leeds Beckett University, where the researcher is a 

student and also an employee. Whereas this could result in a stronger bias when 

selecting the target population, conducting the interviews and analysing the results, local 

knowledge of the case could be seen as a positive factor, as the researcher has easy 

access to the people and resources involved and could take the stance of a participant 

observer (Thomas, 2013). 

In order to mitigate researcher bias during data collection, this research shall present the 

data collected to the target population for feedback and checking. This method has been 

identified by Galliers as essential in order to reduce misinterpretation and identify 

researcher bias (Galliers, 1985).  

SAMPLING 

The sampling strategy for this case study will be purposive sampling, as it is important 

that participants selected have the right level of expertise. It is acknowledged that the 

selection will be influenced by the researcher’s own judgement. However, the 

advantages of being able to obtain a sample which is representative of specific 

viewpoints within the organisation outweigh the disadvantage of having greater 

researcher bias than if probability sampling methods had been utilised. 

The proposed sample for this case study shall comprise: 

• business analysts; 

• head of sustainability; 

• engineering systems manager and officers; 

• software developers. 

DATA COLLECTION METHODS 

Case studies should strive to employ a variety of data collection methods (Dubé & Paré, 

2003), (Kaplan & Maxwell, 2005), (Dawson, 2009). This research proposes to collect 

data by using semi-structured interviews, observations and documents. Interviews will 
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be recorded and transcribed, observations will be recorded as field notes and documents 

will be referenced in the bibliography. 

RESEARCH ETHICS 

As the case study proposed involves human participants, Research Ethics Approval will 

be needed. A risk checklist has been completed, which provisionally classified this 

research as Risk Category 2. An application for Research Ethics Approval shall be 

prepared and submitted to the Local Research Ethics Co-ordinator a year before the 

case study is due to commence. 

DATA ANALYSIS 

The data collected in this case study will be stored and analysed with the help of the 

NVivo qualitative data analysis software. Although there can be disadvantages 

associated with using specialised software to manage research data, such as having to 

spend time learning the software or adding a layer of separation between the researcher 

and the data (Creswell, 2012), this research believes these are outweighed by the 

benefits of being able to organise how data is stored, using version control and 

performing searches for expressions and patterns.  

On a first pass, the data will be read and classified according to the themes proposed by 

Oates: 

• segments that bear no relation to the overall research purpose; 

• segments that provide information describing the research context; 

• segments that are relevant to the research question (Oates, 2005, p. 268). 

The analysis shall focus on the third theme, as suggested by Oates, and further 

categorisation will be carried out inductively to identify, refine and connect emerging 

themes (Oates, 2005, 268-270). This shall be done through progressive cycles of data 

organisation, reflexion, categorisation, interpretation and presentation, as advocated by 

Creswell (2012, pp. 150-154). 

Analysis of the second theme will also be carried out, as suggested by Creswell (2012, 

150-154), in order to provide a rich picture of the case, its settings and participants. 
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ADDITIONAL CASE STUDY 

If time permits, an additional case study will be conducted with Microsoft Azure, who are 

sponsors of this project. Their cloud development team will be contacted and asked to 

evaluate the products of this research. 

RISKS 

A risk analysis exercise was conducted using the format proposed by Sommerville 

(Sommerville, 2010, pp. 600-601). Table 1 shows the risks which could impact this 

project and the strategies identified for their management. 

Risk Probability Effects Strategy 

The cloud resources 

applied for are not 

granted. 

Moderate Serious Investigate the possibility of 

obtaining department funding 

for equivalent resources 

hosted on Amazon AWS, 

Azure or the Google Cloud 

Platform. 

The time allocated to the 

development of the 

prototype is 

underestimated. 

High Tolerable Reduce the scope of the 

prototype and present the 

design/plan of the solution, 

instead of a full 

implementation. 

The time allocated to 

familiarisation with the 

technologies involved is 

underestimated. 

High Serious Apply early for the cloud 

resources needed and start 

the familiarisation process a 

year before the development 

of the prototype is due. 

Attend the NVivo training 

course offered by Leeds 

Beckett University as part of 

their research programme. 

The organisation 

selected is restructured 

Low Serious Maintain communication with 

the organisation and, if there 

are any changes and the 



30 

 

and the case study is 

denied. 

case study is denied, look for 

an alternative organisation. 

In the worst case scenario, 

use graduate students with 

the desired skill set as an 

alternative. 

There are delays in 

conducting the 

interviews due to 

cancellations. 

High Tolerable More buffer days were 

allocated to the year when 

the interviews will be 

conducted, when compared 

to other years. This was 

done in order to absorb 

delays and cancellations.  

Table 1. Risk Analysis 

The risk analysis will be updated every year for presentation to the progression panel.  



31 

 

STRATEGY 

RESEARCH PLAN 

Fig. 6 shows a summarised version of the PhD Gantt Chart for this project, and Fig. 7 

shows the project’s timeline. A complete project plan has been submitted as a separate 

document.  

 

Figure 6. PhD Gantt Chart 

The project plan will be kept up-to-date and shared with both supervisors. It will be 

presented to the progression panel at each progression meeting. 

 

Figure 7. PhD Timeline 
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YEAR 1 

The first year of this research will be dedicated to reviewing the existing knowledge, 

identifying and evaluating key design principles and establishing appropriate design 

patterns for BDaaS processing microservices. 

The initial literature review will be conducted at this stage and the draft chapter will be 

written and presented for evaluation and feedback. However, as the literature review is 

an ongoing process, there are also 13 additional reading weeks distributed around the 6 

years of this project, each followed by a literature review update week.  

There are 28 buffer days to accommodate eventualities.  

 

 

Figure 8. Year 1 
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YEAR 2 

The second year of this research will be dedicated to devising a new classification for 

big data processing patterns and creating a new microservices architecture for the 

processing of BDaaS. 

The creation of a microservices architecture will include one cycle of initial planning, 

three prototype implementation cycles and a final cycle for documentation, each taking 

place over 18 days and including presentation of results, evaluation and feedback. An 

additional 49 days have been allocated to writing up the corresponding chapter, which 

also include presentation of results, followed by evaluation and feedback.  

This year also includes the preparation of a paper for publication, based on the partial 

findings of this research. This will take place over 51 days, following the completion of 

the microservices architecture prototype.  

There are 42 buffer days to accommodate eventualities. 

 

Figure 9. Year 2 
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YEAR 3 

The third year of this research will be dedicated to evaluating existing modelling 

languages and creating a new visual modelling notation for the abstract representation, 

specification and verification of the proposed microservices for big data processing. 

There are 35 buffer days to accommodate eventualities. 

 

Figure 10. Year 3 
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YEAR 4 

The fourth year of this research is dedicated to identifying metrics based on software 

quality principles and evaluating the products of this research by means of benchmarks 

and a real-world case study. 

There are 45 buffer days to accommodate eventualities. 

 

Figure 11. Year 4 
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YEAR 5 

The fifth year of this research will be spent analysing the results of the case study, writing 

the relevant chapter and writing a chapter to discuss the results of the research. 

This year includes the preparation of a second paper for publication, based on the 

findings of the case study. This will take place over 82 days, following the completion of 

the discussion of results. 

There are 29 buffer days to accommodate eventualities. 

 

Figure 12. Year 5 
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YEAR 6 

The sixth and final year of this research will be spent writing up the final thesis. Each 

chapter has been allocated between 35 and 64 days of preparation time, varying 

according to complexity, and will be submitted twice for evaluation and feedback. The 

chapters to be written during the final year are: 

• Research Methodology 

• Conclusion 

• Limitations of Research 

• Suggestions for Further Work 

• Introduction 

• Abstract, Keywords and References  

There are 27 days allocated to preparation of the final thesis for submission and 27 buffer 

days to accommodate eventualities. 

 

Figure 13. Year 6 
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