
1

AN INVESTIGATION INTO MULTI-CLOUD

DATA PROCESSING FOR BIG DATA AS A

SERVICE (BDaaS)

by

THALITA VERGILIO

A proposal submitted in partial fulfilment of the requirements of

Leeds Beckett University for the degree of Doctor of Philosophy

Leeds Beckett University

School of Computing, Creative Technologies and Engineering

2017

2

CONTENTS

Abstract ... 4

Introduction ... 5

Research Context .. 5

Scope ... 6

Rationale, Aim and Objectives .. 7

Rationale .. 7

Research Questions .. 7

Aim ... 8

Objectives .. 8

Related Work and Definitions .. 10

Related Work ... 10

Definitions .. 14

Methodology ... 21

Philosophical Approach ... 21

Prototype Development ... 23

Evaluation .. 24

Strategy ... 31

Research Plan ... 31

Bibliography .. 38

3

FIGURES

Figure 1. Big Data Architectural Layers .. 6

Figure 2. Service Provider Managed Hybrid Cloud (“Cisco Intercloud Fabric: Hybrid

Cloud with Choice, Consistency, Control and Compliance”, 2016) 10

Figure 3. Proposed BDaaS Processing Layer .. 11

Figure 4. Cloud Dataflow provides a unified computation model for batch and streaming

processing (Schmidt, 2015) .. 13

Figure 5. Processing paradigms (Casado and Younas, 2015) 16

Figure 6. PhD Gantt Chart .. 31

Figure 7. PhD Timeline ... 31

Figure 8. Year 1 .. 32

Figure 9. Year 2 .. 33

Figure 10. Year 3 .. 34

Figure 11. Year 4 .. 35

Figure 12. Year 5 .. 36

Figure 13. Year 6 .. 37

TABLES

Table 1. Risk Analysis ... 30

4

ABSTRACT

Big data is an area of technological research which has been receiving increased

attention in recent years. As the Internet of Things (IoT) expands to different spheres of

human life, a large volume of structured, semi-structured and unstructured data is

generated at very high velocity. To derive value from big data, businesses and

organisations need to detect patterns and trends in historical data. They also need to

receive, process and analyse real-time data in real-time, or close to real-time, a

challenge which current technologies and traditional system architectures find difficult to

meet. This research aims to investigate such challenges with a view to proposing a

workable solution.

A number of architectures have emerged to answer distinct challenges posed by big data

such as distributed batch processing of historical data, or the processing of streaming

data in real-time. There is no single accepted solution to cater for all types of big data

processing, so different technologies tend to be used in combination. Consequently, the

learning curve for a developer working with big data is steep, and the processing logic

developed within one system is generally not compatible with other systems, leading to

code duplication and low maintainability. This research proposes to investigate the

requirements for a unifying processing component for big data, and to create a

microservices architecture where the processing logic encapsulated within each service

component can be reused.

The experimental part of this research will involve the creation of a prototype to

demonstrate the proposed microservices architecture. This prototype will be evaluated

technically, via benchmarks, and empirically, through a case study followed by qualitative

data analysis.

5

INTRODUCTION

RESEARCH CONTEXT

The advent and expansion of the IoT (Internet of Things) and has brought big data to the

forefront of technology research. Smartphones, tablets, GPS trackers, sensors, video

surveillance devices all produce a vast amount of data, in different formats, in real time.

This data presents challenges not only in terms of storage, but also when it comes to

processing and analysing it to extract information which is valuable to businesses and

government agencies. A recent report published by CISCO shows that devices and

connections are growing faster than the global population, which is partly due to the

increase in the number of connected devices per household (“The Zettabyte Era—

Trends and Analysis - Cisco,” 2016). Over the next 20 years, this expansion in the

industrial IoT is estimated to add $10 to $15 trillion to the global GDP, according to a

report published by GE (Evans & Annunziata, 2012).

Microservices are a recent architectural pattern which emerged from challenges

presented by large monolithical applications to real-world companies (Nadareishvili et

al., 2016, p. ix). They are highly suited to the IoT, as they share the same requirements

and the architectural goal of creating applications through distributed service

composition (Butzin et al., 2016). A number of cloud service providers such as Amazon

Web Services (AWS), Google Cloud Platform and Microsoft Azure have started to offer

big data services for processing batch and stream data. However, there is very little

integration between services offered by different cloud providers (Chen, H. et al., 2016).

Moreover, collaboration between developers working with these technologies with a view

to sharing requirements and reusing code is limited (Park et al., 2015).

One of the main obstacles to collaboration between developers working with Big Data

as a Service (BDaaS) is the use of proprietary technology by cloud service providers.

This means services built within one provider’s platform will not necessarily work if

transposed to a different provider’s platform (Chen, H. et al., 2016). In order to achieve

platform decoupling, an in-depth study of the common abstractions shared by BDaaS

platforms’ underlying processing languages must be conducted, with a view to producing

recommendations for a unifying microservice component model capable of operating on

different BDaaS platforms. Research, informed by accepted design principles such as

reusability, loose coupling, cohesion, abstraction, composition, autonomy, portability and

6

distribution, needs to be conducted to advance towards a unifying set of models,

methods and processes for big data processing in the cloud.

This research endeavours to fill this gap by producing a systematic and unified approach

to developing Big Data as a Service (BDaaS) based on a microservices architecture. To

achieve this aim, existing knowledge in the area of big data processing, microservices

and architectures will be thoroughly reviewed. Informed by these findings, a unique

classification for the different types of processing architectures will be proposed, and a

new unifying microservices architecture for big data processing will be created.

Additionally, a visual modelling notation and a formal specification language will also be

produced to support the analysis and design of big data processing microservices.

SCOPE

This research will focus on big data processing, defined as the transformations which

takes place after the data has been collected and before it is analysed (see fig. 1.).

Storage, which can happen after collection, after processing, after analysing, or at any

combination of these stages, is excluded from the scope of this project.

Figure 1. Big Data Architectural Layers

7

RATIONALE, AIM AND OBJECTIVES

RATIONALE

The diverse architectures and variety of technologies used to process big data make the

learning curve for a developer working with big data high. A survey on IIOT adoption

commissioned by the Industrial Internet Consortium reveals that 64% of senior IT

executives believe integrating data from disparate sources and formats is amongst the

biggest challenges of the Industrial IOT, and 36% of organisations have concerns around

accessing the right skills and expertise (Soley et al., 2016). This shortage of highly skilled

big data professionals is a worldwide problem which higher education providers are only

beginning to address, according to research conducted at the Østfold University College

(Due et al., 2015).

As indicated by Miller (2014), the demand for data engineers who are capable of

integrating big data from different data sources is on the increase. However, since the

types of data sources and technologies involved in big data processing are not

standardised, it becomes challenging for universities to design a curriculum around the

specific skills that the industry requires (Miller, 2014).

Calls have been made for a unifying development platform which could cope with the

different challenges posed by big data, as well as a de facto programming language

capable of expressing the different processing demands of big data analysis (Gorton,

2008). This solution would need to be capable of processing batch as well as stream

data in order to reconcile the major big data processing models, and would represent an

important contribution towards focusing the training and reducing the learning curve for

IT professionals entering the field. It would also promote collaboration and reuse

amongst developers working on a variety of microservices platforms.

RESEARCH QUESTIONS

This research seeks to investigate the major architectures designed for the processing

of BDaaS, and to advance towards a unifying set of models, methods and processes for

big data processing in the cloud. The primary questions of this research are thus:

8

• Does existing technology support the creation of unifying and reusable

microservices capable of processing different types of big data from a variety of

different sources?

• Which models, methods and processes need to be in place to support the

design and development of these microservices?

• Would the proposed products of this research be useful to IT professionals in a

real-world organisation?

AIM

The aim of this research is to produce a systematic and unified approach to developing

Big Data processing pipelines in the cloud, based on reusable and scalable

microservices.

OBJECTIVES

In order to achieve the aim of producing a systematic and unified approach to developing

Big Data processing pipelines in the cloud, based on reusable and scalable

microservices, I intend:

• to review and critically evaluate existing literature and approaches in the area of

big data processing, microservices and architectures;

• to identify and evaluate key design principles for the development of a new

modelling notation and microservices architecture for big data processing in the

cloud, such as reusability, loose coupling, cohesion, abstraction, composition,

autonomy, portability and distribution;

• to identify design patterns in existing big data frameworks and determine those

applicable for a cloud-based microservices architecture for big data.

• to identify various behaviours of big data and to devise a new classification for

existing big data processing patterns;

• to create a microservices architecture for the processing of big data by unified,

reusable and scalable microservices;

• to evaluate the suitability of existing modelling languages such as

UML/SoaML/SysML for the abstract representation, specification and verification

of the proposed microservices for big data processing.

• to propose a visual modelling notation to represent cloud-based big data

processing microservices;

9

• to identify metrics for cloud-based big data processing microservices and to

evaluate them against these metrics;

• to develop a demonstrable prototype to evaluate the modelling notation and

unified microservices architecture for big data processing in the cloud with a

real-world case study (Leeds Beckett University, possibly Google Research,

USA, and the Microsoft Azure Development Team).

The review of existing literature will be used to gain knowledge of the main existing

methods for big data processing, and of existing big data and microservices

architectures. It will also help identify the key design principles for big data processing

and the design patterns applicable to a unifying BDaaS microservices architecture. A

new level of abstraction to represent big data and a new microservices architecture for

the processing of BDaaS by unified and reusable microservice components will

represent unique contributions to existing knowledge, and will be devised using the

information gathered in the literature review.

The next step will be to propose a visual modelling notation and a formal specification

language capable of expressing the fundamental programming abstractions involved in

big data processing and supporting the design of big data processing microservices.

The experimental part of this research will involve the creation of a prototype to

demonstrate the proposed microservices architecture for processing different types of

big data. This prototype will be evaluated technically, via benchmarks, and empirically,

through a case study followed by qualitative data analysis.

10

RELATED WORK AND DEFINITIONS

RELATED WORK

A model for integrating BDaaS across different providers, called Neo-Metropolis, was

proposed by H. Chen et al. (2016). This model is based on a kernel, which provides the

platform’s basic functionality, a periphery, composed of various service providers hosted

on different clouds, and an edge, representing customers who utilise services and

provide requirements (Chen, H. et al., 2016). Whilst the kernel would be fairly stable and

backwards compatible, with stable releases, the periphery would be in constant

development, or perpetual beta, and would be based on open-source code (H. Chen et

al., 2016).

The Neo-Metropolis study conducted a case study based on Cisco’s Intercloud Services

Platform, which was, at the time of writing, the only commercial Neo-Metropolis

implementation (H. Chen et al., 2016). Cisco Intercloud Services Platform provides a

common interface for managing data and provisioning services across different cloud

providers. Thus, the processing logic contained in services deployed to this platform can

be reused, as data from different clouds can be plugged in as required (see fig. 2.)

(“Cisco Intercloud Fabric: Hybrid Cloud with Choice, Consistency, Control and

Compliance”, 2016).

Figure 2. Service Provider Managed Hybrid Cloud (“Cisco Intercloud Fabric: Hybrid Cloud with Choice,

Consistency, Control and Compliance”, 2016)

This research complements the Neo-Metropolis solution, but differs from it in that it

proposes an additional layer of abstraction to enable the processing of diverse types of

11

big data using a unified microservice component. Let us consider, for instance, a simple

service that filters data based on some regular expression. A microservice developed

within the Cisco Intercloud platform, built using Cloudera, Hortonworks, or another

Hadoop implementation available within the platform, would run against Amazon EMR,

Azure’s HDInsight, or other Hadoop-based services hosted on different clouds. It would

not, however, run against streaming data. If we wanted to reuse the same filtering logic

to process stream data, the service would need to be re-written as a Storm or Spark-

based service. This research proposes an abstraction for representing different types of

big data which would enable a greater spectrum of reuse for big data processing

microservices (see fig. 3.).

Figure 3. Proposed BDaaS Processing Layer

IBM’s big data platform is a different type of solution to the Neo-Metropolis model. It is

not a microservices type of architecture and does not provide inter-cloud integration, as

did the Neo-Metropolis model, but it provides answers to some of the issues we identified

previously, namely the interoperability of processing components across different types

of big data. BigInsights, a Hadoop-based system consisting of a standard Hadoop kernel,

plus a number of components built around it (Zikopoulos et at., 2012, p. 51), is a central

part of IBM’s big data platform. BigInsights integrates with Stream, a system designed to

process real-time data, by means of adapters (Zikopoulos et at., 2012, p. 109).

12

The adapter used by IBM’s big data platform to allow batch data to be processed as

streams is particularly relevant to this research, as it uses the concept of windows of data

to perform the conversion (Zikopoulos et at., 2012, p. 128). This concept is also present

in the Java Stream API, for example, which uses windows based on element count to

make an infinite stream finite (“Java Platform SE 8”, 2014). Additionally, sliding time

windows have been identified as a recurrent pattern in stream processing (Khare et al.,

2015) and it has been suggested that a stream architecture enhanced with ways to

reason about time could supersede the Lambda Architecture (Akidau, 2015). Previous

research thus suggests that a common processing language for batch and stream data

would need to incorporate the concept of windows of data.

This research aims to explore the use of the Adapter design pattern (Gamma et al., 1994)

in a similar way to that implemented as part of IBM’s big data platform. However, instead

of translating from the batch layer to the stream layer and using the stream layer to

process the data, or vice-versa, it proposes an additional layer of abstraction where the

processing takes place (see fig. 3.) so as to facilitate the development, deployment and

reuse of small processing units as microservices.

Google Cloud Dataflow is a managed cloud-based service which offers a unifying

programming language for the processing of batch and stream data (Schmidt, 2015). It

incorporates Millwheel, a stream-based framework built around the concepts of low

watermarks and timers to extract accurate data from near-real-time streams (Akidau et

al., 2013). Millwheel uses an abstraction called PCollection to represent bounded or

unbounded stream or batch data (“PCollection” 2016). Unbounded data, i.e. very large

batch data or infinite streams of data, is processed in stages through the use of

windowing (see fig. 4) (Schmidt, 2015).

13

Figure 4. Cloud Dataflow provides a unified computation model for batch and streaming processing (Schmidt,

2015)

The Google Cloud Dataflow solution addresses the question of processing stream and

batch data using a unifying programming language. The solution is proprietary, but

Google has made the Cloud Dataflow SDK open source, and maintains it is possible to

utilise it to build services which could be deployed on other clouds (Vambenepe, 2015).

Cloudera has initiated a project to incorporate the Google Cloud Dataflow SDK into

Apache Spark, but their project is still in its infancy and, at the time of writing this

proposal, no substantial results have been found in the literature (Wills, 2015). This

research shall conduct a rigorous academic assessment of these recent technological

advancements, with a view to possibly utilising the Google Cloud Dataflow SDK as a

programming language to support the proposed unifying microservices architecture for

BDaaS processing. Furthermore, we shall contribute to existing research and practice

by proposing a standardised set of models, methods and processes for the development

of BDaaS processing microservices.

Other less closely related work, such as architectures designed to process batch or

stream data, the lambda architecture and hybrid architectures, is detailed in the

definitions section.

14

DEFINITIONS

The following terms will be used throughout this research as defined below.

ARCHITECTURE

As stated by (Bass et al., 2012, p. 26), software architecture is a new discipline and there

are many existing definitions for it. Taylor et al. define it as

“the set of principal design decisions made during its development and

any subsequent evolution.” (Taylor et al., 2009, p. 1)

This is a broad definition, which does not convey the idea of architecture as the

representation of the structure of a software system. This research shall utilise the

definition provided by Bass et al.

“The software architecture of a program or computing system is the

structure or structures of the system, which comprise software

components, the externally visible properties of these components, and

the relationships among them.” (Bass et al., 2012, p. 23)

where a component would represent a microservice.

MICROSERVICES

Microservices are small deployable units which encapsulate functionality that can be

used by other systems. A microservices architecture is usually defined as the opposite

of a monolithic application architecture (Nadareishvili et al., 2016, p. 17), (Newman,

2015), (Bonér, 2016), i.e. an architecture guided by the principle of breaking down

complex functionality into small independent units which collectively constitute a

computing system. Sam Newman defines microservices as a collection of “small,

autonomous services that work together” (2015, p. 16).

Microservices are cohesive, loosely coupled and composable (Miller, 2015) (Newman,

2015), making the architecture more resilient in the event of failure. They are also more

agile, as their development and deployment takes comparatively less time than if the

same functionality were to be implemented as part of a monolithic application (Miller,

2015). Since the components are cohesive, isolated and loosely coupled, there are fewer

side-effects to implementing new code. Individual units can be replaced independently,

so there is no need to bring a whole application down for upgrades or maintenance

15

(Miller, 2015). Given the distributed nature of big data systems, a microservices

architecture is more flexible and resilient, and therefore more suitable than the traditional

monolithic approach.

BIG DATA

Big data can be defined as data which somehow challenges the processing capabilities

of current technology. These challenges are usually categorised around the three Vs:

volume, velocity and variety (Casado & Younas, 2015), (Assunção et al., 2015),

(Zikopoulos et al., 2013, p. 9) and others, with the occasional mention of additional Vs

such as veracity, value and viability (Assunção et al., 2015).

The volume of data which lead internet companies such as Facebook and Netflix have

accumulated has reached hundreds of petabytes (Krishnan & Tse, 2013), (Bronson et

al., 2015), and it has been estimated that the largest big data company in the world,

Google, holds over 10 exabytes of data (Lederman, 2016). This data is kept on disk,

stored in data centres all over the world, posing significant architectural challenges when

it comes to processing it in order to extract valuable information with an acceptable level

of latency.

The velocity at which data is generated is also a significant factor when it comes to

engineering applications which will consume and process this data. Netflix’s data

pipeline, for example, receives approximately 500 billion events a day, which amounts

to 1.3 petabytes of incoming data that needs to be processed each day, in real time

(“Evolution of the Netflix Data Pipeline,” 2016). Facebook processes hundreds of

gigabytes per second across hundreds of real-time data pipelines (G. Chen et al., 2016).

These companies have invested in architectures which can consume incoming data at

high velocity.

The most accepted classification for big data variety separates it into structured (usually

stored in relational databases), semi-structured (data stored in NoSQL databases) and

unstructured (Mohammed et al., 2016), (Casado & Younas, 2015). Assunção et al. add

a mixed category to this classification (Assunção et al., 2015). Data which originates

from surveillance cameras, social networks or tracking devices, for example, is diverse

in structure from data stored in NoSQL databases, which is again diverse from data

stored in relational databases. An architecture designed to cater for all types of big data

16

needs to take the variety factor into consideration, as one can no longer assume that

data will be stored in a single relational database.

This research uses the term big data to refer to data characterised by the three Vs

defined above.

BIG DATA PROCESSING PARADIGMS

Thomas Kuhn (1964) introduced the notion of scientific paradigms as

“…universally recognized scientific achievements that for a time provide

model problems and solutions to a community of practitioners.” (1964, viii)

A paradigm as defined by Kuhn implies a level of consensus within the scientific

community around concepts, practises and experiments over a period of time (1964).

In the field of big data processing, Casado & Younas (2015) identify three paradigms to

explain the evolution of big data architectures: batch processing, stream processing, and

the Lambda Architecture, which comprises batch plus stream processing.

Figure 5. Processing paradigms (Casado and Younas, 2015)

At the time of writing their paper, the authors believed they were in the middle of the real-

time or stream processing paradigm (see fig. 5.) (Casado & Younas, 2015). This is

17

explained through the number of real-time architectures that were being developed at

the time. The Lambda Architecture and other hybrid computation models represented

the future (Casado & Younas, 2015). This research argues that only batch processing

characterises a paradigm in Kuhn’s terms, as it was only during the batch period that

there was enough agreement around concepts and processes to allow the scientific

community to conduct normal science.

Contrary to what was suggested by Casado and Younas (2015), it is hard to trace a

clear-cut line of when the stream processing paradigm ends and the hybrid computation

paradigm begins. Twitter’s Summingbird (Hausenblas, 2014) and Yahoo’s Storm-Yarn

(Evans & Feng, 2013), for example, are both early instances of the Lambda Architecture,

whereas Apache Storm, one of the leading stream-based data processing frameworks,

is still widely used and underwent a major release as late as 2016 (Goetz, 2016).

This research views the period after the end of the batch processing paradigm as one of

crisis and emergence of new scientific theories, rather than of one of normal science,

when a paradigm is able to provide adequate answers for the questions it defines (Kuhn,

1964). Through an evaluation of the emerging architectures and proposal of an original

classification, this research aims to enhance current understanding of a period of

scientific revolution in the field of big data processing.

BATCH PROCESSING

Batch processing was the first and is the most solidly established approach. It is based

on the MapReduce algorithm and was designed at Google (Dean & Ghemawat, 2008),

before going open-source as the Hadoop software framework. Hadoop is a distributed

system for processing large volumes of data which is easy to use and extremely powerful

(Dean & Ghemawat, 2008). It abstracts the complexities of parallelisation and inter-

machine communication away from the user, who only needs to specify the map and

reduce functions (Dean & Ghemawat, 2008). Hadoop can handle terabytes of data

(O’Malley, 2008), but one of its main criticisms is its high latency and high start-up

overhead (Stewart & Singer, 2012), which renders it ineffective for real-time systems.

Most cloud service providers offer some type of Hadoop managed service such as, for

example, Amazon’s Elastic MapReduce (“What is Amazon EMR?,” 2016), Azure’s

HDInsight (Gronlund, 2016), or IBM’s BigInsights (Zikopoulos et at., 2012, pp. 85-123).

18

Since this research aims to investigate big data processing in the context of a

microservices architecture, it will focus on Hadoop provided as a service.

STREAM PROCESSING

Stream processing architectures evolved from the need to process real-time data. While

batch processing is related to the volume of big data, stream processing relates to

velocity. Real-time information such as which topics are trending on Twitter needs to

come from data which is constantly being updated, with minimal latency. The notion of a

data stream is an abstraction used to convey the nature of the data source: continuous

and potentially infinite, and the way in which it is processed: in real-time (or close to real-

time), before it is persisted to storage (Zikopoulos et al., 2013, p. 47).

Many reactive architectures were designed to cater for big data streams, such as

Yahoo’s S4 (Neumeyer et al., 2010), Apache Storm (Marz, 2014), Borealis (Abadi et al.,

2005), StreamCloud (Gulisano et al., 2010), Stormy (Loesing et al., 2012), TelegraphCQ

(Chandrasekaran et al., 2003) and Cyclops-React (McClean, 2015). Unlike the batch

processing architectures, which are mostly centred around MapReduce, when it comes

to stream-based architectures, there is no prevailing technology, although Apache Storm

is a strong candidate (Casado & Younas, 2015). The main criticism when it comes to

real-time stream-based systems is that they tend to compromise veracity or precision for

velocity or ultra-low latency (Akidau, 2015).

Stream processing is offered as a service by cloud providers such as Amazon (“Amazon

Kinesis Streams” 2016), Microsoft Azure (“Stream Analytics – Real-time data analytics,”

2016) and IBM (Zikopoulos et al., 2013, pp. 127-162). This research shall concentrate

on stream processing provisioned as a service.

LAMBDA ARCHITECTURE

The Lambda Architecture was presented by Marz & Warren to describe systems which

would adopt a “best of both” approach to the batch/stream dichotomy. These

architectures would use the stream layer for real-time data and the batch layer for

historical data. The data would then be merged at query level (2015). Examples of this

type of architecture can be found in Twitter’s SummingBird (Hausenblas, 2014), Yahoo’s

Storm-Yarn (Evans & Feng, 2013), IBM’s Big Data platform (Zikopoulos et al., 2013),

Lambdoop (Tejedor, 2013), AllJoynLambda (Villari et al., 2014) and Facebook’s

19

integration between its Puma, Swift and Stylus stream systems and its data stores (G.

Chen et al., 2016). The main criticism to this approach is having to maintain two different

complex architectures and having duplicate code in the two different layers (Kreps,

2014).

Examples of the lambda architecture provided as a service are Google Cloud Dataproc

(“What is Google Cloud Dataproc?,” 2016) and Azure’s HDInsight Plus, which adds

Apache Spark and Apache Storm clusters to the standard HDInsight Hadoop

components (Shah, 2016). As with the batch and stream architectures, this research

shall focus on the lambda architecture provided as a service.

HYBRID ARCHITECTURES

This research defines hybrid architectures as those which are batch-based but have

been adapted to consume data from streams or those which are stream-based but have

been adapted to consume historical data from batches. Examples of the first type are

(Grinev et al., 2011), who modified the reduce function in MapReduce to accept push

values, (Condie et al., 2010), who modified the map function to pipeline data to reducers

as it is produced and (Brito et al., 2011), who reimplemented stateless stream processing

operators as mappers and stateful operators as reducers. Examples of architectures

which are stream-based, but capable of processing batch data with very low latency are

Google’s MillWheel (Akidau et al., 2013), elucidated in the Related Work section, and

the combination of Kafka and Samza used at LinkedIn, which is built on the concepts of

ordered data and replayable streams (Kreps, 2014).

This research shall concentrate on hybrid big data architectures provided as a service

such as, for example, MillWheel, which is part of the Google Cloud Dataflow platform.

DATABASE-BASED ARCHITECTURES

Database-based architectures are built around databases or data stores and may or may

not be adapted to consume stream data. Examples of these architectures are Percolator,

a system designed to incrementally update Google’s web search indexes (Peng &

Dabek, 2010), SnappyData, which combines Apache Storm with GemFire, a

transactional store which keeps data in RAM memory across distributed nodes for fast

access (Ramnarayan et al., 2016), and (Simmonds et al., 2014) which uses Cassandra

20

distributed across multiple nodes in the cloud and minimises latency through the use of

efficient indexing patterns.

Database-based architectures generally underperform when compared to the other

types of architecture described previously (Peng and Dabek, 2010), so they are not

offered as cloud-based services by the main commercial providers. The evaluation of

(Simmonds et al., 2014)’s research was performed using the Amazon cloud, but they did

not offer a comparison with other types of processing architectures. Although database-

based big data processing architectures are not typically offered as a service, this

research proposes to examine them in order to acquire a thorough understanding of the

subject matter, and to gather knowledge to create a new classification for big data

processing architectures.

21

METHODOLOGY

Briony Oates identifies six strategies for carrying out research: survey, design and

creation, experiment, case study, action research and ethnography (Oates, 2005). This

research adopts the design and creation strategy, and uses a case study for its

evaluation.

PHILOSOPHICAL APPROACH

Approach can be defined as the researcher’s perspective, or the manner in which they

conduct their research (Galliers, 1985, p. 147). Generally, the literature identifies two

competing approaches to research: positivist/empirical and interpretivist/constructivist.

Positivists focus their research on scientific experiments, characterised by repeatability,

reductionism and refutability. Interpretivists, on the other hand, recognise that reality is

formed by individual and social constructs, and believe there can be many possible

interpretations for the same phenomena (Oates, 2005, pp. 281-296), (Leedy & Ormrod,

2000), (Galliers, 1985).

Although the positivist approach still prevails in the realms of the natural and engineering

sciences, as well as computer science and software engineering (Lee et al., 2014), it is

recognised that positivism has been generally ineffective in social sciences (Hirschheim,

1985). By taking the viewpoint that computer systems are social rather than technical

systems (Land, 1992), (Hirschheim, 1985), this research shall reject positivism in favour

of one of its variants: post-positivism, along the lines of Karl Popper (Popper, 1968).

Popper shared many of the tenets of positivism such as repeatability and reliance on

rigorous experiments, but he believed there was a fundamental problem with the validity

of statements gathered from experience. The inductive process could not, according to

him, lead to universal truths about the world. It could only lead to imperfect knowledge

which will one day be superseded. A meaningful scientific hypothesis, according to

Popper, is one which is falsifiable, that is to say one which could be invalidated by

experience. If a given hypothesis cannot be invalidated by any possible experiment, then

it does not enhance the knowledge we have of the world – it is not scientific. From this

perspective, we can derive that what is possible to know about the world is not that

something is true (true or false are not empirical concepts for Popper), but that, so far,

experiments have not proven it to be false (Popper, 1968). The current research shall be

22

undertaken under this philosophical stance. Care will be taken to ensure that the

hypotheses formulated in the development and evaluation of the research products are

empirically falsifiable. Additionally, the theories, models and classifications to emerge

from this study will be understood, not as universal truths, but as improvements to

existing theories.

This research agrees with Roth and Mehta (Roth & Mehta, 2002) in that there are

benefits to be reaped from combining different philosophical perspectives in the

evaluation of a research product. In particular, the evaluation and discussion of the

results of the case study proposed shall benefit from an interpretivist perspective, as the

outcomes observed will be influenced by a number of different variables which cannot

be as easily controlled as in a laboratory experiment. This research recognises the value

of considering different interpretations for qualitative data, and ascribes significance to

the impact that a scientist may have in the case being studied.

23

PROTOTYPE DEVELOPMENT

The development methodology used in the creation of a new microservices architecture

for big data processing in the cloud, as well as in the case study implementation will be

prototype-based. There will be an initial analysis and design phase in which the

knowledge gathered from the literature will be processed and design ideas put forward

for examination. This shall be followed by the creation of a prototype to demonstrate the

main concepts of the proposed solution.

The prototype will be further enhanced through additional cycles of analysis, design,

implementation and testing. The choice of a prototype-based methodology instead of,

for example, a waterfall-based approach, was taken to allow for early experimentation

with different solutions. This warrants for better distribution of the time available and

mitigates the risk of spending excessive time on design and analysis, to the detriment of

implementation and testing (Oates, 2005, p. 114).

A pure agile approach to development was considered but, due to the importance of

design and analysis to this research, it was deemed unsuitable. While the agile approach

focuses on delivery and measures progress by the software that gets delivered (Beck et

al., 2001), this research shall focus on design and analysis and how these can be

enhanced with each iterative development cycle.

REQUIREMENTS

The development of the proposed microservices architecture for big data processing

requires:

• a source of big batch data;

• a source of fast streaming data;

• a clustered Hadoop environment available as a service;

• a Stream environment available as a service;

• a development environment with 4-8 virtual machines, preferably hosted in

different clouds;

• a minimum of 16 cores of CPU and 1TB of storage.

An application has been submitted to the Azure for Research program for cloud

resources meeting the above specifications.

24

An application will be submitted to the Open Science Data Cloud (OSDC), a scientific

community which provides support for researchers, for:

• General Compute Resources, which include 1TB of storage and 16 cores of

CPU;

• Access to the Public Data Commons, which contains 1PB of public data in a

variety of disciplines;

• Hadoop Resources.

Alternative providers of cloud resources have been considered: Amazon AWS and

Google Cloud Platform, but preference will be given to Azure for Research and the Open

Science Data Cloud as they are the only services which are free of charge for

researchers.

EVALUATION

The prototype proposed as part of this research will be evaluated empirically by means

of benchmarks and a case study.

BENCHMARKS

The microservices architecture for big data processing proposed in this research will be

evaluated through benchmarks and compared to industry standard solutions for big data

processing.

A minimum of three fundamental quality metrics will be identified and used to set up the

benchmarks, reflecting key software architecture principles such as reusability, loose

coupling, cohesion, abstraction, composition, autonomy, portability and distribution.

The proposed microservices architecture shall be compared to that of Hadoop provided

as a service, as well as the Google Cloud Dataflow.

CASE STUDY

This research proposes to evaluate the new microservices architecture, the visual

modelling notation and the formal specification language created by means of a case

study, which will also serve as triangulation for the benchmark evaluation.

25

Although there have been increasing demands for real-world evaluation of computer

systems (Oates, 2005, p. 111), this is not undertaken very often in computer science. In

a survey of 400 research papers, (Tichy et al., 1995) concluded that computer scientists

published significantly less empirically validated results when compared to optical

engineers and neural scientists. They regard this as a limitation which needs to be

corrected if computer science is to enjoy the same level of recognition as engineering

and the natural sciences (Tichy et al., 1995). A broader survey was conducted more

recently where 1500 scientific papers in the areas of computer science, software

engineering and information systems were analysed. The conclusion was similar:

computer science and software engineering tend to focus on creating new products, but

there is very little effort expended on evaluation (Glass et al., 2009). In light of these

shortcomings in the field, this research aims to provide real-world evaluation of its

products by conducting a case study.

The case study proposed shall allow us to evaluate:

• the effectiveness of the microservices architecture in processing big data in a

real- world setting;

• the usability of the microservices architecture to software developers;

• the expressiveness of the visual modelling notation and specification language.

Furthermore, the case study will be used to gauge the relevance of this research to

practitioners, as advocated by (Rosemann & Vessey, 2008) in their repudiation of the

rigour versus relevance dichotomy. Although they suggest focus groups as the ideal

means of conducting applicability checks, due to the importance of leaving the research

object unchanged and the fact that a focus group doesn’t need a research lifecycle of its

own (Rosemann & Vessey, 2008), this research believes a small scale case study meets

the required criteria while painting a richer picture of the object being studied.

CASE DESCRIPTION

A case study will be conducted within the Estates Services department at Leeds Beckett

University. As part of the case study, a prototype of the proposed microservices

architecture shall be implemented for a limited set of data with the typical volume, velocity

and variety characteristics.

26

The case study will then be described and the microservices architecture, visual

modelling notation and specification language presented to the target population through

appropriate documentation. This shall be followed by semi-structured interviews with the

target population.

EVALUATION CRITERIA

This case study will be conducted in order to verify whether:

• The microservices architecture can process stored data with an acceptable level

of latency in a real-world scenario.

• The microservices architecture can process streaming data with an acceptable

level of accuracy in a real-world scenario.

• The microservices are decoupled from their underlying platforms in a real-world

scenario.

• The visual modelling notation and specification language are accessible,

expressive and useful to business analysts, project managers and developers.

• The microservices architecture is accessible to developers who have limited

experience with big data analytics.

SELECTION CRITERIA

This case study has been selected for being critical, meaning it has the particular

conditions that allow the testing of the research’s hypotheses (Dubé & Paré, 2003). The

Estates Services department at Leeds Beckett University manages data which has the

fundamental characteristics of big data: volume (log files with operational data that spans

several years), velocity (data from meters, that is sampled and streamed in real-time)

and variety (device log exports, for example, contain unstructured data, as the format is

specific to each manufacturer).

A needs analysis exercise was conducted with the Engineering Systems Manager at

Leeds Beckett University to gather preliminary information for this case study. It revealed

the existence of a study conducted in 2012 to assess the energy efficiency of one of the

university’s data centres by calculating its Power Usage Effectiveness (PUE) (Pattinson,

2012). The real-time sampling rate used for this study was, however, limited by the

technology available at the time. It is possible that, by modifying the current sampling

approach to one of higher volume and velocity, the calculation will become more

27

accurate and therefore suitable to other controlled environments such as laboratories or

large colocation data centres.

It should be stated that convenience has also influenced the selection of this case study.

This research is being conducted at Leeds Beckett University, where the researcher is a

student and also an employee. Whereas this could result in a stronger bias when

selecting the target population, conducting the interviews and analysing the results, local

knowledge of the case could be seen as a positive factor, as the researcher has easy

access to the people and resources involved and could take the stance of a participant

observer (Thomas, 2013).

In order to mitigate researcher bias during data collection, this research shall present the

data collected to the target population for feedback and checking. This method has been

identified by Galliers as essential in order to reduce misinterpretation and identify

researcher bias (Galliers, 1985).

SAMPLING

The sampling strategy for this case study will be purposive sampling, as it is important

that participants selected have the right level of expertise. It is acknowledged that the

selection will be influenced by the researcher’s own judgement. However, the

advantages of being able to obtain a sample which is representative of specific

viewpoints within the organisation outweigh the disadvantage of having greater

researcher bias than if probability sampling methods had been utilised.

The proposed sample for this case study shall comprise:

• business analysts;

• head of sustainability;

• engineering systems manager and officers;

• software developers.

DATA COLLECTION METHODS

Case studies should strive to employ a variety of data collection methods (Dubé & Paré,

2003), (Kaplan & Maxwell, 2005), (Dawson, 2009). This research proposes to collect

data by using semi-structured interviews, observations and documents. Interviews will

28

be recorded and transcribed, observations will be recorded as field notes and documents

will be referenced in the bibliography.

RESEARCH ETHICS

As the case study proposed involves human participants, Research Ethics Approval will

be needed. A risk checklist has been completed, which provisionally classified this

research as Risk Category 2. An application for Research Ethics Approval shall be

prepared and submitted to the Local Research Ethics Co-ordinator a year before the

case study is due to commence.

DATA ANALYSIS

The data collected in this case study will be stored and analysed with the help of the

NVivo qualitative data analysis software. Although there can be disadvantages

associated with using specialised software to manage research data, such as having to

spend time learning the software or adding a layer of separation between the researcher

and the data (Creswell, 2012), this research believes these are outweighed by the

benefits of being able to organise how data is stored, using version control and

performing searches for expressions and patterns.

On a first pass, the data will be read and classified according to the themes proposed by

Oates:

• segments that bear no relation to the overall research purpose;

• segments that provide information describing the research context;

• segments that are relevant to the research question (Oates, 2005, p. 268).

The analysis shall focus on the third theme, as suggested by Oates, and further

categorisation will be carried out inductively to identify, refine and connect emerging

themes (Oates, 2005, 268-270). This shall be done through progressive cycles of data

organisation, reflexion, categorisation, interpretation and presentation, as advocated by

Creswell (2012, pp. 150-154).

Analysis of the second theme will also be carried out, as suggested by Creswell (2012,

150-154), in order to provide a rich picture of the case, its settings and participants.

29

ADDITIONAL CASE STUDY

If time permits, an additional case study will be conducted with Microsoft Azure, who are

sponsors of this project. Their cloud development team will be contacted and asked to

evaluate the products of this research.

RISKS

A risk analysis exercise was conducted using the format proposed by Sommerville

(Sommerville, 2010, pp. 600-601). Table 1 shows the risks which could impact this

project and the strategies identified for their management.

Risk Probability Effects Strategy

The cloud resources

applied for are not

granted.

Moderate Serious Investigate the possibility of

obtaining department funding

for equivalent resources

hosted on Amazon AWS,

Azure or the Google Cloud

Platform.

The time allocated to the

development of the

prototype is

underestimated.

High Tolerable Reduce the scope of the

prototype and present the

design/plan of the solution,

instead of a full

implementation.

The time allocated to

familiarisation with the

technologies involved is

underestimated.

High Serious Apply early for the cloud

resources needed and start

the familiarisation process a

year before the development

of the prototype is due.

Attend the NVivo training

course offered by Leeds

Beckett University as part of

their research programme.

The organisation

selected is restructured

Low Serious Maintain communication with

the organisation and, if there

are any changes and the

30

and the case study is

denied.

case study is denied, look for

an alternative organisation.

In the worst case scenario,

use graduate students with

the desired skill set as an

alternative.

There are delays in

conducting the

interviews due to

cancellations.

High Tolerable More buffer days were

allocated to the year when

the interviews will be

conducted, when compared

to other years. This was

done in order to absorb

delays and cancellations.

Table 1. Risk Analysis

The risk analysis will be updated every year for presentation to the progression panel.

31

STRATEGY

RESEARCH PLAN

Fig. 6 shows a summarised version of the PhD Gantt Chart for this project, and Fig. 7

shows the project’s timeline. A complete project plan has been submitted as a separate

document.

Figure 6. PhD Gantt Chart

The project plan will be kept up-to-date and shared with both supervisors. It will be

presented to the progression panel at each progression meeting.

Figure 7. PhD Timeline

32

YEAR 1

The first year of this research will be dedicated to reviewing the existing knowledge,

identifying and evaluating key design principles and establishing appropriate design

patterns for BDaaS processing microservices.

The initial literature review will be conducted at this stage and the draft chapter will be

written and presented for evaluation and feedback. However, as the literature review is

an ongoing process, there are also 13 additional reading weeks distributed around the 6

years of this project, each followed by a literature review update week.

There are 28 buffer days to accommodate eventualities.

Figure 8. Year 1

33

YEAR 2

The second year of this research will be dedicated to devising a new classification for

big data processing patterns and creating a new microservices architecture for the

processing of BDaaS.

The creation of a microservices architecture will include one cycle of initial planning,

three prototype implementation cycles and a final cycle for documentation, each taking

place over 18 days and including presentation of results, evaluation and feedback. An

additional 49 days have been allocated to writing up the corresponding chapter, which

also include presentation of results, followed by evaluation and feedback.

This year also includes the preparation of a paper for publication, based on the partial

findings of this research. This will take place over 51 days, following the completion of

the microservices architecture prototype.

There are 42 buffer days to accommodate eventualities.

Figure 9. Year 2

34

YEAR 3

The third year of this research will be dedicated to evaluating existing modelling

languages and creating a new visual modelling notation for the abstract representation,

specification and verification of the proposed microservices for big data processing.

There are 35 buffer days to accommodate eventualities.

Figure 10. Year 3

35

YEAR 4

The fourth year of this research is dedicated to identifying metrics based on software

quality principles and evaluating the products of this research by means of benchmarks

and a real-world case study.

There are 45 buffer days to accommodate eventualities.

Figure 11. Year 4

36

YEAR 5

The fifth year of this research will be spent analysing the results of the case study, writing

the relevant chapter and writing a chapter to discuss the results of the research.

This year includes the preparation of a second paper for publication, based on the

findings of the case study. This will take place over 82 days, following the completion of

the discussion of results.

There are 29 buffer days to accommodate eventualities.

Figure 12. Year 5

37

YEAR 6

The sixth and final year of this research will be spent writing up the final thesis. Each

chapter has been allocated between 35 and 64 days of preparation time, varying

according to complexity, and will be submitted twice for evaluation and feedback. The

chapters to be written during the final year are:

• Research Methodology

• Conclusion

• Limitations of Research

• Suggestions for Further Work

• Introduction

• Abstract, Keywords and References

There are 27 days allocated to preparation of the final thesis for submission and 27 buffer

days to accommodate eventualities.

Figure 13. Year 6

38

BIBLIOGRAPHY

Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H.,

Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., others, 2005. The Design of

the Borealis Stream Processing Engine., in: CIDR. pp. 277–289.

Akidau, T., 2015. Have Your Cake and Eat It Too -- Further Dispelling the Myths of the

Lambda Architecture [Online]. URL

https://www.infoq.com/presentations/millwheel#downloadPdf (accessed

10.28.16).

Akidau, T., Whittle, S., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R.,

McVeety, S., Mills, D., Nordstrom, P., 2013. MillWheel: fault-tolerant stream

processing at internet scale. Proc. VLDB Endow. 6, 1033–1044.

doi:10.14778/2536222.2536229.

Amazon Kinesis Streams [Online], 2016. URL

https://aws.amazon.com/kinesis/streams/ (accessed 11.26.16).

Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A.S., Buyya, R., 2015. Big Data

computing and clouds: Trends and future directions. J. Parallel Distrib. Comput.

79–80, 3–15. doi:10.1016/j.jpdc.2014.08.003.

Bass, L., Clements, P. & Kazman, R. (2012) Software Architecture in Practice. 3

edition. Upper Saddle River, NJ, Addison-Wesley Professional.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,

R., Mallor, S., Shwaber, K., Sutherland, J., 2001. The Agile Manifesto.

Bonér, J., 2016. Reactive Microservices Architecture. O’Reilly Media, Inc.

Brito, A., Martin, A., Knauth, T., Creutz, S., Becker, D., Weigert, S., Fetzer, C., 2011.

Scalable and Low-Latency Data Processing with Stream MapReduce. 2011

IEEE Third Int. Conf. Cloud Comput. Technol. Sci. CloudCom 48.

Bronson, N., Lento, T., Wiener, J.L., 2015. Open data challenges at Facebook. IEEE,

pp. 1516–1519. doi:10.1109/ICDE.2015.7113415.

39

Butzin, B., Golatowski, F. & Timmermann, D. (2016) Microservices approach for the

internet of things. In: 2016 IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA). pp.1–6.

Casado, R., Younas, M., 2015. Emerging Trends and Technologies in Big Data

Processing. Concurr. Comput.: Pract. Exper. 27, 2078–2091.

doi:10.1002/cpe.3398.

Chan, Y., Gray, I., Wellings, A., Audsley, N.C., 2014. Exploiting Multicore Architectures

in Big Data Applications: The JUNIPER Approach. Program. Issues Heterog.

Multicores MULTIPROG.

Chandrasekaran, S., Shah, M.A., Cooper, O., Deshpande, A., Franklin, M.J.,

Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F., 2003.

TelegraphCQ: continuous dataflow processing. ACM Press, p. 668.

doi:10.1145/872757.872857.

Chen, G.J., Yilmaz, S., Wiener, J.L., Iyer, S., Jaiswal, A., Lei, R., Simha, N., Wang, W.,

Wilfong, K., Williamson, T., 2016. Realtime Data Processing at Facebook. ACM

Press, pp. 1087–1098. doi:10.1145/2882903.2904441.

Chen, H.M., Kazman, R., Haziyev, S., Kropov, V. & Chtchourov, D. (2016) Big Data as

a Service: A Neo-Metropolis Model Approach for Innovation. In: 2016 49th

Hawaii International Conference on System Sciences (HICSS). pp.5458–5467.

Cisco Intercloud Fabric: Hybrid Cloud with Choice, Consistency, Control and

Compliance (2016) [Online]. Available from:

<http://www.cisco.com/c/en/us/td/docs/solutions/Hybrid_Cloud/Intercloud/Intercl

oud_Fabric.pdf> [Accessed 25 November 2016].

Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Gerth, J., Talbot, J., Elmeleegy,

K., Sears, R., 2010. Online aggregation and continuous query support in

MapReduce. ACM Press, p. 1115. doi:10.1145/1807167.1807295.

Creswell, J.W., 2012. Qualitative Inquiry and Research Design: Choosing Among Five

Approaches, 3rd Revised edition edition. ed. SAGE Publications, Inc, Los

Angeles.

40

Dawson, D.C., 2009. Projects in Computing and Information Systems: A Student’s

Guide, 2 edition. ed. Addison Wesley, Harlow, England; New York.

Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large

clusters. Commun. ACM 51, 107. doi:10.1145/1327452.1327492.

Dubé, L. and Paré, G. (2003) Rigor in Information Systems Positivist Case Research:

Current Practices, Trends, and Recommendations. MIS Q., 27 (4), pp.597–635.

Due, B., Kristiansen, M., Colomo-Palacios, R. & Hien, D.H.T. (2015) Introducing big

data topics: a multicourse experience report from Norway. In: ACM Press,

pp.565–569. Available from:

<http://dl.acm.org/citation.cfm?doid=2808580.2808667> [Accessed 1

November 2016].

Evans, B., Feng, A., 2013. Storm-YARN Released as Open Source | YDN Blog -

Yahoo [Online]. URL https://developer.yahoo.com/blogs/ydn/storm-yarn-

released-open-source-143745133.html (accessed 10.28.16).

Evans, P. and Annunziata, M. (2012) Industrial Internet: Pushing the Boundaries of

Minds and Machines.

Galliers, R. (1985) Choosing Information Systems Research Approaches. Research

Methods in Information Systems, pp.144–162.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. & Booch, G. (1994) Design Patterns:

Elements of Reusable Object-Oriented Software. 1 edition. Reading, Mass,

Addison-Wesley Professional.

Glass, R.L., Vessey, I. and Ramesh, V. (2009) RESRES: The story behind the paper

‘Research in software engineering: An analysis of the literature’. Information

and Software Technology, 51 (1), pp.68–70.

Goetz, T., 2016. Storm 1.0.0 released [Online]. URL

http://storm.apache.org/2016/04/12/storm100-released.html (accessed

11.6.16).

Gorton, I., 2008. Software Architecture Challenges for Data Intensive Computing.

IEEE, pp. 4–6. doi:10.1109/WICSA.2008.50.

41

Grinev, M., Grineva, M., Hentschel, M., Kossmann, D., 2011. Analytics for the real-time

web. Proc. VLDB Endow. 4, 1391–1394.

Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Valduriez, P., 2010.

StreamCloud: A Large Scale Data Streaming System. IEEE, pp. 126–137.

doi:10.1109/ICDCS.2010.72.

Hausenblas, M., 2014. Twitter Open-Sources its MapReduce Streaming Framework

Summingbird [Online]. URL https://www.infoq.com/news/2014/01/twitter-

summingbird (accessed 10.28.16).

Gronlund, C.J., 2016. What is Hadoop on HDInsight? [Online]. URL

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-introduction

(accessed 11.26.16).

Hirschheim, R., 1985. Information Systems Epistemology: An Historical Perspective.

Research Methods in Information Systems 13–35.

Java Platform SE 8 [WWW Document], 2014. . Java Platform, Standard Edition 8. URL

https://docs.oracle.com/javase/8/docs/api/ (accessed 10.30.16).

Kaplan, B., Maxwell, J., 2005. Qualitative Research Methods for Evaluating Computer

Information Systems, in: Anderson, J., Aydin, C. (Eds.), Evaluating the

Organizational Impact of Healthcare Information Systems. Springer New York,

pp. 30–55.

Khare, S., An, K., Gokhale, A., Tambe, S., Meena, A., 2015. Reactive Stream

Processing for Data-centric Publish/Subscribe, in: Proceedings of the 9th ACM

International Conference on Distributed Event-Based Systems, DEBS ’15.

ACM, New York, NY, USA, pp. 234–245. doi:10.1145/2675743.2771880.

Kreps, J., 2014. Questioning the Lambda Architecture - O’Reilly Media [Online]. URL

https://www.oreilly.com/ideas/questioning-the-lambda-architecture (accessed

10.28.16).

Krishnan, S., Tse, E., 2013. Hadoop Platform as a Service in the Cloud [Online]. Netflix

Tech Blog. URL http://techblog.netflix.com/2013/01/hadoop-platform-as-service-

in-cloud.html (accessed 10.30.16).

42

Kuhn, T.S., 1964. The structure of scientific revolutions. University of Chicago Press,

Chicago.

Land, F. (1992) The Information Systems Domain. In: Information Systems Research,

Issues, Methods and Practical Guidelines. Great Britain, Blackwell Scientific

Publications, pp.6–13.

Lederman, A., 2016. Let’s take a look at some really BIG “big data” [Online]. URL

http://www.deepwebtech.com/2016/06/lets-take-a-look-at-some-really-big-big-

data/ (accessed 10.30.16).

Lee, A.S., Briggs, R., Dennis, A.R., 2014. Crafting Theory to Satisfy the Requirements

of Explanation. IEEE, pp. 4599–4608. doi:10.1109/HICSS.2014.566.

Leedy, P.D. and Ormrod, J.E. (2000) Practical Research: Planning and Design. 7

edition. Upper Saddle River, N.J, Pearson.

Loesing, S., Hentschel, M., Kraska, T., Kossmann, D., 2012. Stormy: an elastic and

highly available streaming service in the cloud. ACM Press, p. 55.

doi:10.1145/2320765.2320789.

Marz, N., 2014. History of Apache Storm and lessons learned - thoughts from the red

planet - thoughts from the red planet [Online]. URL

http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html

(accessed 10.28.16).

Marz, N., Warren, J., 2015. Big Data: Principles and best practices of scalable realtime

data systems, 1st ed. Manning Publications.

McClean, J., 2015. Plumbing Java 8 Streams with Queues, Topics and Signals

[Online]. Medium. URL https://medium.com/@johnmcclean/plumbing-java-8-

streams-with-queues-topics-and-signals-d9a71eafbbcc (accessed 10.27.16).

Miller, M., 2015. Innovate or Die: The Rise of Microservices. The Wall Street Journal.

Miller, S., 2014. Collaborative Approaches Needed to Close the Big Data Skills Gap.

Journal of Organization Design 3, 26. doi:10.7146/jod.9823.

43

Mohammed, A.F., Humbe, V.T., Chowhan, S.S., 2016. A review of big data

environment and its related technologies. IEEE, pp. 1–5.

doi:10.1109/ICICES.2016.7518904.

Nadareishvili, I., Mitra, R., McLarty, M. & Amundsen, M. (2016) Microservice

Architecture: Aligning Principles, Practices, and Culture. 1 edition. O’Reilly

Media.

Neumeyer, L., Robbins, B., Nair, A., Kesari, A., 2010. S4: Distributed Stream

Computing Platform. IEEE, pp. 170–177. doi:10.1109/ICDMW.2010.172.

Newman, S. (2015) Building Microservices. 1 edition. Beijing Sebastopol, CA, O’Reilly

Media.

Oates, B.J. (2005) Researching Information Systems and Computing. 1 edition.

London; Thousand Oaks, Calif, SAGE Publications Ltd.

O’Malley, O., 2008. Apache Hadoop Wins Terabyte Sort Benchmark | hadoopnew -

Yahoo [Online]. URL https://developer.yahoo.com/blogs/hadoop/apache-

hadoop-wins-terabyte-sort-benchmark-408.html (accessed 10.30.16).

Park, K., Nguyen, M.C. & Won, H. (2015) Web-based collaborative big data analytics

on big data as a service platform. In: 2015 17th International Conference on

Advanced Communication Technology (ICACT). pp.564–567.

Pattinson (2012) Measuring Data Centre Efficiency. Leeds: Leeds Metropolitan

University.

Pcollection [Online], 2016. URL https://cloud.google.com/dataflow/model/pcollection

(accessed 11.26.16).

Peng, D., Dabek, F., 2010. Large-scale Incremental Processing Using Distributed

Transactions and Notifications, in: Proceedings of the 9th USENIX Conference

on Operating Systems Design and Implementation, OSDI’10. USENIX

Association, Berkeley, CA, USA, pp. 251–264.

Ramnarayan, J., Menon, S., Wale, S., Bhanawat, H., 2016. SnappyData: a hybrid

system for transactions, analytics, and streaming: demo. ACM Press, pp. 372–

373. doi:10.1145/2933267.2933295.

44

Rosemann, M., Vessey, I., 2008. Toward Improving the Relevance of Information

Systems Research to Practice: The Role of Applicability Checks. MIS Q. 32, 1–

22.

Roth, W.D. and Mehta, J.D. (2002) The Rashomon Effect: Combining Positivist and

Interpretivist Approaches in the Analysis of Contested Events. Sociological

Methods & Research, 31 (2), pp.131–173.

Schmidt, E., 2015. Google Cloud Platform Blog: Announcing General Availability of

Google Cloud Dataflow and Cloud Pub/Sub [Online]. URL

https://cloudplatform.googleblog.com/2015/08/Announcing-General-Availability-

of-Google-Cloud-Dataflow-and-Cloud-Pub-Sub.html (accessed 11.26.16).

Shah, S., 2016. What are the different components available with an HDInsight cluster?

[WWW Document]. URL https://docs.microsoft.com/en-

us/azure/hdinsight/hdinsight-component-versioning#hdinsight-standard-and-

hdinsight-premium (accessed 11.26.16).

Simmonds, R.M., Watson, P., Halliday, J., Missier, P., 2014. A Platform for Analysing

Stream and Historic Data with Efficient and Scalable Design Patterns. IEEE, pp.

174–181. doi:10.1109/SERVICES.2014.40.

Soley, R., Stone, J. and Castaldini, F. (2016) IDG Quick Pulse Results Webcast: CIO

Survey: IIoT Adoption -The Real Barriers & Opportunities Ahead.

Sommerville, I., 2010. Software Engineering, 9 edition. ed. Pearson, Boston.

Stream Analytics – Real-time data analytics [Online], 2016. URL

https://azure.microsoft.com/en-gb/services/stream-analytics/ (accessed

11.26.16).

Tejedor, R.C., 2013. Lambdoop, a framework for easy development of big data

applications.

Land, F. (1992) The Information Systems Domain. In: Information Systems Research,

Issues, Methods and Practical Guidelines. Great Britain, Blackwell Scientific

Publications, pp.6–13.

Taylor, R.N., Medvidovic, N., Dashofy, E., 2009. Software Architecture: Foundations,

Theory, and Practice, 1 edition. ed. John Wiley & Sons, Hoboken, NJ.

45

Thomas, G., 2013. How to Do Your Research Project, 2nd Revised edition edition. ed.

Sage Publications Ltd, Los Angeles.

The Netflix Tech Blog: Evolution of the Netflix Data Pipeline [Online], 2016. URL

http://techblog.netflix.com/2016/02/evolution-of-netflix-data-pipeline.html

(accessed 10.30.16).

The Zettabyte Era—Trends and Analysis - Cisco [Online], 2016. Zettabyte Era—Trends

Anal. URL http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html (accessed

10.30.16).

Tichy, W.F., Lukowicz, P., Prechelt, L., Heinz, E.A., 1995. Experimental evaluation in

computer science: A quantitative study. Journal of Systems and Software 28,

9–18. doi:10.1016/0164-1212(94)00111-Y

Vambenepe, W., 2015. Google Cloud Platform Blog: Announcing Google Cloud

Dataflow runner for Apache Flink [Online]. URL

https://cloudplatform.googleblog.com/2015/03/announcing-Google-Cloud-

Dataflow-runner-for-Apache-Flink.html (accessed 11.26.16).

Villari, M., Celesti, A., Fazio, M., Puliafito, A., 2014. AllJoyn Lambda: An architecture

for the management of smart environments in IoT. IEEE, pp. 9–14.

doi:10.1109/SMARTCOMP-W.2014.7046676.

What is Amazon EMR? [Online], 2016. URL

http://docs.aws.amazon.com/ElasticMapReduce/latest/ManagementGuide/emr-

what-is-emr.html (accessed 11.26.16).

What is Google Cloud Dataproc? [Online], 2016. URL

https://cloud.google.com/dataproc/docs/concepts/overview (accessed

11.26.16).

Wills, J., 2015. New in Cloudera Labs: Google Cloud Dataflow on Apache Spark -

Cloudera Engineering Blog [Online]. URL

http://blog.cloudera.com/blog/2015/01/new-in-cloudera-labs-google-cloud-

dataflow-on-apache-spark/ (accessed 11.26.16).

46

Zikopoulos, P., deRoos, D., Parasuraman, K., Deutsch, T., Giles, J. & Corrigan, D.

(2013) Harness the Power of Big Data The IBM Big Data Platform. 1 edition.

McGraw-Hill Education.

